Ampha P20超便携全自动花粉活力分析仪 基于微流控阻抗流式细胞技术(IFC),能够在微流体精确参考条件下,实现流动态花粉细胞的全自动高通量、连续、无损检测和分析,并在测试结束时即时输出活性花粉、失活花粉及异常花粉占比,细胞数量,浓度,大小等信息,是田间或温室进行花粉系统筛选和常规检测的理想工具,为您的快速决策提供及时且可靠的数据支持。
便携性 | 易用性 | 全自动数据分析 |
小巧便携 外壳坚固 内置电池 | 嵌入式触屏PC 测量操作指引 自动清洗维护 | 无需数据分析经验 即时输出测量结果 快速做出决策响应 |
作物专用芯片 全自动解决方案: 芯片编程了针对特定作物的测量、冲洗、清洗、算法和分析等过程,可实现全自动测量和分析,提高测试、分析的统一性,增加结果的准确性。 |
番茄专用芯片 | 辣椒专用芯片 | 玉米专用芯片 | 小麦专用芯 |
应用方向
技术参数
作物专用芯片: | 玉米、小麦、番茄、辣椒,选配 |
测量体积范围: | 2000 ~3000μl |
测量浓度范围: | 0~1.2×10 5个cells/ ml |
采样流量范围: | 800 ~1500μl/ min |
适配样品管 : | 标准5ml流式细胞管 |
仪 器 尺 寸: | 340mm×420mm × 205mm(H*W*D) |
仪 器 重 量: | 7.8Kg |
操 作 系 统: | Linux,内嵌式触碰PC |
数 据 传 输: | Wi-Fi(IEEE 802.11ac/a/b/g/n)、USB |
蓝 牙 : | 蓝牙5.0/2.1 + EDR |
端 口: | 2×2.0USB |
环 境 温 度: | -20~60°C |
环 境 湿 度: | 10%~90% |
适 用 电 源: | 24V DC ± 10 %,max. 3 A,< 90 W;支持24V可充电电池,24V车载适配器 |
自动测量分析: | 上样后全自动测量、冲洗、清洗、并分析,即时输出结果 |
叠 加 分 析: | 支持2-6次测量结果的手动叠加分析,适用于不同处理、不同发育阶段的对比 |
统 计 分 析: | 软件支持多边形门控数据的统计分析 |
数 据 类 型: | 支持.CSV、.HTML、.PNG三种格式 |
案例分享
Ø优质高抗品系收集、筛选
高活性花粉是作物优质高产的前提,Ampha P20可帮助在育种或生产过程中密切关注花粉活性,在田间、温室或实验室快速、精确筛选出适合繁殖发育、授粉的理想材料。
Ø花粉供应链质量控制
花粉具有高敏感特性,花粉活性在生长、采集、储存、运输、再水合以及授粉的各个环节极易受温度、光照、湿度、散粉等多方面因素的影响。Ampha Z40可以提供一个标准化的测量方法,快速高效且统一的监控花粉的活性状态,并优化花粉保存和运输条件,以确保授粉效率。
参考文献
1. Heidmann I, Schade-Kampmann G, et al (2016). Impedance Flow Cytometry: A Novel Technique in Pollen Analysis. PLoS ONE 11(11): e0165531. doi:10.1371/journal.pone.0165531.
2. Iris Heidmann and Marco Di Berardino(2017). Impedance Flow Cytometry as a Tool to Analyze Micro spore and Pollen Quality. Plant Germline Development: Methods and Protocols, Methods in Molecular Biology,vol. 1669, DOI 10.1007/978-1-4939-7286-9_25.
3. Jiemeng Xu. et al. (2017). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Mol Breeding: 37:58, DOI 10.1007/s11032-017-0664-2.
4. Anowarul I. Bokshi, Daniel K.Y. Tan, Richard M. Trethowan. A robust and rapid pollen viability test using impedance flow cytometry for high throughput screening of heat tolerant wheat (Triticum aestivum) germplasm. 2019 Agronomy Australia Conference, 25-29 August 2019.
5. Schaffasz A, Windpassinger S, Snowdon R, et al. Reproductive Cold Stress Tolerance in Sorghum F1 Hybrids is a Heterotic Trait. Agronomy, 2019, 9(9): 508.
6. Mathieu Anatole Tele Ayenan.et al. Accelerating Breeding for Heat Tolerance in Tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy, 2019, 9,720
7. Opitz C , Schade G , Kaufmann S , et al. Rapid determination of general cell status, cell viability, and optimal harvest time in eukaryotic cell cultures by impedance flow cytometry[J]. Applied Microbiology and Biotechnology, 2019, 103(20).
8. Canonge J, Philippot M, Leblanc C, et al. Impedance flow cytometry allows the early prediction of embryo yields in wheat (Triticum aestivum L.) microspore cultures. Plant Science, 2020, 300: 110586.
9. Ostermann, M., Sauter, A., Xue, Y. et al. Label-free impedance flow cytometry for nanotoxicity screening. Sci Rep 10, 142 (2020).
10. Daniela Impe, Janka Reitz et al. Assessment of Pollen Viability for Wheat. Frontiers in Plant Science, January 2020, Volume 10, Article 1588
11. John H. Moore et al. Quantifying bacterial spore germination by single-cell impedance cytometryfor assessment of host microbiota susceptibility to Clostridioides difficileinfection. Biosensors and Bioelectronics, Volume 166, 2020, 112440, ISSN0956-5663.
12. Lorenzo Ascari, Valerio Cristofori et al. Hazelnut Pollen Phenotyping Using Label-Free Impedance Flow Cytometry. Frontiers in Plant Science, December 2020, Volume 11, Article 615922
13. Angela L. Pattison, Mohammad Nazim Uddin, et al. Use of in-situ field chambers to quantify the influence of heat stress in chickpea (Cicer arientinum). Field Crops Research. Volume 270, 2021, 108215
14. Rafiq, H.; Hartung, J.; Burgel, L.; Röll, G.; Graeff-Hönninger, S. Potential of Impedance Flow Cytometry to Assess the Viability and Quantity of Cannabis sativa L. Pollen. Plants 2021, 10, 2739
产地:瑞士Amphasys